Propofol anesthesia and sleep: a high-density EEG study.

نویسندگان

  • Michael Murphy
  • Marie-Aurélie Bruno
  • Brady A Riedner
  • Pierre Boveroux
  • Quentin Noirhomme
  • Eric C Landsness
  • Jean-Francois Brichant
  • Christophe Phillips
  • Marcello Massimini
  • Steven Laureys
  • Giulio Tononi
  • Mélanie Boly
چکیده

STUDY OBJECTIVES The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. DESIGN 256-channel EEG recordings in humans during propofol anesthesia. SETTING Hospital operating room. PATIENTS OR PARTICIPANTS 8 healthy subjects (4 males). INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Initially, propofol induced increases in EEG power from 12-25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25-40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. CONCLUSIONS Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopaminergic D1 receptors in nucleus basalis modulate recovery from propofol anesthesia in rats

Objective(s): Melatonin, an important hormone secreted by the epiphysis, is a powerful anti-oxidant with a high potential to neutralize medical toxins. The goal of this study was to demonstrate the beneficial effect of melatonin on epididymal sperm and reproductive parameters in mice treated with acetylsalicylic acid (ASA).Materials and Methods:</stro...

متن کامل

A transition in brain state during propofol-induced unconsciousness.

Rhythmic oscillations shape cortical dynamics during active behavior, sleep, and general anesthesia. Cross-frequency phase-amplitude coupling is a prominent feature of cortical oscillations, but its role in organizing conscious and unconscious brain states is poorly understood. Using high-density EEG and intracranial electrocorticography during gradual induction of propofol general anesthesia i...

متن کامل

Depth of anesthesia estimation based on EEG signal using brain effective connectivity between frontal and temporal regions

Background: Ensuring adequate depth of anesthesia during surgery is essential for anesthesiologists to prevent the occurrence of unwanted alertness during surgery or failure to return to consciousness. Since the purpose of using anesthetics is to affect the central nervous system, brain signal processing such as electroencephalography (EEG) can be used to predict different levels of anesthesia....

متن کامل

EEG slow-wave coherence changes in propofol-induced general anesthesia: experiment and theory

The electroencephalogram (EEG) patterns recorded during general anesthetic-induced coma are closely similar to those seen during slow-wave sleep, the deepest stage of natural sleep; both states show patterns dominated by large amplitude slow waves. Slow oscillations are believed to be important for memory consolidation during natural sleep. Tracking the emergence of slow-wave oscillations durin...

متن کامل

Increase in high frequency EEG activity explains the poor performance of EEG spectral entropy monitor during S-ketamine anesthesia.

OBJECTIVE To study the effects of S-ketamine on the EEG and to investigate whether spectral entropy of the EEG can be used to assess the depth of hypnosis during S-ketamine anesthesia. METHODS The effects of sub-anesthetic (159 (21); mean (SD) ng/ml) and anesthetic (1,959 (442) ng/ml) serum concentrations of S-ketamine on state entropy (SE), response entropy (RE) and classical EEG spectral po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Sleep

دوره 34 3  شماره 

صفحات  -

تاریخ انتشار 2011